Model predictive control of micro cogeneration fuel cell systems
نویسندگان
چکیده
With the increasing application of distributed energy resources and information technologies in the electricity infrastructure, innovative possibilities for incorporating the demand side more actively in power system operation are enabled. At the residential level energy costs could be reduced with intelligent price-based control concepts (demand response). A promising, controllable, residential distributed generation technology is micro cogeneration (micro-CHP). Micro-CHP is an energy efficient technology that simultaneously provides heat and electricity to households during operation. This paper presents a detailed model of a household using a proton exchange membrane fuel cell (PEMFC) microCHP system in conjunction with heat storage options to fulfil its heat and part of its electricity demand. Furthermore, a decentralised controller based on a model predictive control (MPC) strategy is proposed. MPC can take benefit of future knowledge on prizes and energy demands and can therefore lead to better system performance. In simulations the performance of the MPC-controlled PEMFC system is illustrated under different conditions regarding energy pricing, domestic energy demand, and system configuration. Index Terms — Demand response, distributed energy resources, PEM fuel cells, micro cogeneration, model predictive control.
منابع مشابه
Performance assessment of a SOFC cogeneration system for residential buildings located in eastern Iran
It is expected that residential units may replace traditional heat and power production systems with cogeneration ones. Among the different cogeneration systems, fuel cell based systems are a suitable choice due to their high efficiency, high power density, low emission and low noise. In this paper, a cogeneration system based on solid oxide fuel cells is examined. The system, including the f...
متن کاملA model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system
The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is defined as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price. In the proposed setup, heat is provided by conventional electric radiators and a combined heat a...
متن کاملMicro Cogeneration : towards a Decentralized and Sustainable German Energy System ?
Micro cogeneration – the simultaneous production of heat and power in an individual building based on small energy conversion units such as Stirling and reciprocating engines or fuel cells – is expected to increase energy efficiency on the level of household energy supply. A large-scale introduction of micro CHP may radically change the electricity system and turn consumers into power producers...
متن کاملExergy Analysis of a Molten Carbonate Fuel Cell-Turbo Expander-Steam Turbine Hybrid Cycle
Exergy analysis of an integrated molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle has been presented in this study. The proposed cycle has been used as a sustainable energy approach to provide a micro hybrid power plant with high exergy efficiency. To generate electricity by the mentioned system, an externally reformed molten carbonate fuel cell located upstream of the combi...
متن کاملModel Reduction of a Solid Oxide Fuel Cell (SOFC) for Control Purposes
Fuel cells belong to an avant-garde technology family for a wide variety of applications including micro-power, transportation power, stationary power for buildings and other distributed generation applications. The first objective of this contribution is to find a suitable reduced model of a Solid Oxide Fuel Cell (SOFC). The derived reduced model is then used to design a state estimator. I...
متن کامل